ATLAS DE SEQUÍAS HIDROLÓGICAS DE LA REGIÓN HIDROGRÁFICA DEL TITICACA
DIRECTORIO

Dr. Ken Takahashi Guevara
Presidente Ejecutivo del SENAMHI

Ing. Oscar Felipe Obando
Director de la Dirección de Hidrología del SENAMHI

Mg. Sc. Julia Acuña Azarte
Subdirectora de Estudios e Investigaciones Hidrológicas del SENAMHI

REVISOR DEL ESTUDIO

Mg. Sc. Julia Acuña Azarte
Subdirectora de Estudios e Investigaciones Hidrológicas del SENAMHI

RESPONSABLE DEL ESTUDIO

Ing. Fiorella Vega Jácome
Especialista en Hidrología del SENAMHI

DISEÑO, DIAGRAMACIÓN Y EDICIÓN

Miriam Casaverde Riveros
Especialista en Hidrología VI del SENAMHI

Lima - Perú
Diciembre - 2017
Citar como:

ÍNDICE

RESUMEN ... 1
1. INTRODUCCIÓN ... 2
2. EL MARCO TEÓRICO ... 1
 2.1. Sequias .. 1
 2.1.1. Secuencia meteorológiáca ... 1
 2.1.2. Secuencia hidrológica .. 1
 2.1.3. Secuencia agrícola ... 1
 2.1.4. Secuencia subterránea .. 1
 2.2. Análisis de Cópulas ... 2
 2.3. Distribuciones Marginales .. 2
 2.4. Distribuciones marginales para Severidad ... 2
 2.4.1. Valor Extremo Generalizado (GEV) ... 2
 2.4.2. Logístico Generalizado (GLO) ... 1
 2.4.3. Pareto Generalizado (GPA) .. 1
 2.4.4. Distribución Gumbel (GUM) ... 1
 2.5. Distribuciones Marginales para la Duración ... 1
 2.5.1. Distribución Exponencial ... 1
 2.5.2. Distribución Weibull .. 2
 2.5.3. Distribución Log-normal .. 2
 2.6. Cópulas Arquimedianas ... 2
 2.6.1. Cópula de Frank ... 3
 2.6.2. Cópula de Gumbel ... 3
 2.6.3. Cópula de Clayton .. 4
 2.6.4. Cópula de Joe ... 4
 2.7. Selección de la Cópula de mejor ajuste ... 4
3. MATERIALES Y METODOS .. 5
 3.1. Área de estudio ... 5
 3.2. Climatología ... 6
 3.3. Datos ... 8
 3.4. Metodología ... 9
 3.4.1. Modelamiento Hidrológico ... 9
 3.4.2. Caracterización de secuías Hidrológicas ... 10
 3.4.2.1. Índice SSFI ... 10
 3.4.2.2. Determinación de la duración y severidad ... 11
 3.4.3. Determinación de Distribuciones Marginales .. 12
 3.4.4. Análisis de probabilidad bivariada ... 13
 3.4.5. Curvas SDF .. 13
4. RESULTADOS ... 14
 4.1. Índice Estandarizado de Caudales SSFI .. 14
 4.2. Características de las secuías hidrológicas .. 15
 4.3. Distribuciones marginales y Cópulas de mejor ajuste ... 16
 4.4. Probabilidad bivariada ... 16
 4.4.1. Cuenca Huancané ... 17
 4.4.2. Cuenca Ramis ... 18
 4.4.3. Cuenca Coata .. 19
 4.4.4. Cuenca Illapa ... 20
 4.4.5. Cuenca llave ... 21
5. CONCLUSIONES .. 23
6. REFERENCIAS BIBLIOGRÁFICAS ... 24
ANEXO .. 25
LISTA DE FIGURAS

Figura 3-1. Ubicación del área de estudio y la red de estaciones hidrométricas................................. 6
Figura 3-2. Climatología de la precipitación observada del Altiplano Peruano (periodo 1981-2010)... 7
Figura 4-1. Series de tiempo del SSFI de los caudales a la salida de las cuencas de estudio 14
Figura 4-2. Severidad versus la Duración para cada cuenca de estudio ... 15
Figura 4-3. FDA de las tres distribuciones de mejor ajuste para la cuenca Huancané 17
Figura 4-4. FDA conjunta para la severidad y la duración de la cuenca Huancané............................. 17
Figura 4-5. FDA de las tres distribuciones de mejor ajuste para la cuenca Ramis 18
Figura 4-6. FDA conjunta para la severidad y la duración de la cuenca Ramis 18
Figura 4-7. FDA de las tres distribuciones de mejor ajuste para la cuenca Coata 19
Figura 4-8. FDA conjunta para la severidad y la duración de la cuenca Coata. 19
Figura 4-9. FDA de las tres distribuciones de mejor ajuste para la cuenca Illpa 20
Figura 4-10. FDA conjunta para la severidad y la duración de la cuenca Illpa 20
Figura 4-11. FDA de las tres distribuciones de mejor ajuste para la cuenca llave 21
Figura 4-12. FDA conjunta para la severidad y la duración de la cuenca llave. 21
LISTA DE TABLAS

Tabla 3-1: Estaciones hidrológicas utilizadas ... 8
Tabla 3-2: Valores de los parámetros del modelo SWAT calibrado 9
Tabla 3-3: Estadísticas de medida de desempeño del modelo SWAT en la etapa de calibración y validación a paso mensual .. 10
Tabla 3-4: Promedio anual del balance hídrico (periodo 1985-2015) de las cuencas del río Huancané, Ramis, Coata, llave e Illpa de la región hidrográfica del Lago Titicaca................................. 10
Tabla 3-5: Clasificación del Índice Estandarizado de Caudales ... 11
Tabla 4-1: Resumen de las distribuciones marginales de mejor ajuste 16
Tabla 4-2: Resumen de las copulas de mejor ajuste .. 16
Tabla 4-3: Periodo de retorno univariado y bivariado para diferentes duraciones y severidades...... 22
RESUMEN

El presente estudio surge de la necesidad de caracterizar temporal y espacialmente la sequía hidrológica, en términos de severidad y duración, en las cuencas hidrográficas del río Huancané, Ramis, Coata, Illpa e Ilave, situadas en la parte peruana de la región hidrográfica del Titicaca.

La caracterización de las sequías hidrológicas se ha basado en el índice estandarizado de caudales (SSFI, siglas en inglés) en 5 estaciones hidrométricas (Puente Huancané, Puente Ramis, Puente Unocolla, Puente Ilave e Illpa) para el periodo 1985-2015; series obtenidas como resultado del modelamiento y simulación hidrológica con el modelo SWAT (Soil and water assessment tool), elaborado por Fernandez, C. (2017).

En el presente estudio se estimó la probabilidad bivariada de ocurrencia de sequías, mediante la aplicación de las cópulas de la familia Arquimedianas (Copulas Frank, Gumbel, Clayton y Joe), para lo cual se definió la cópula de mejor ajuste en base al estadístico AIC (Akaike Information Criterion) como criterio para la elección.

Los resultados muestran la variabilidad temporal de las sequías en cada una de las cuencas y la variación de las características de las sequías entre las cuencas, siendo la cuenca Coata la que presentó mayor duración y severidad de los eventos de sequía. Asimismo, el análisis multivariado evidenció similares relaciones de dependencia entre la severidad y duración en casi todas las cuencas ya que estas características en su mayoría se ajustaron a la cópula Joe, a excepción de la cuenca Coata. Además, se llegó a la conclusión de que las cuencas Coata e Ilave tienen una mayor probabilidad de ocurrencia de sequías de una duración y severidad dada, en comparación con las otras cuencas de la región hidrográfica del Titicaca.
1. **INTRODUCCIÓN**

La sequía es uno de los desastres naturales más costosos y más extendidos (Bryant 2005), afectando gran variedad de sectores económicos (principalmente agricultura) (Hunt et al. 2014; Farhangfar et al. 2015), los ecosistemas y bosques; reduciendo por ende los medios de vida de la humanidad (Barlow et al. 2006). Las sequías son particularmente importantes en regiones donde las actividades económicas son altamente dependientes de los recursos hídricos (Vicente-Serrano et al. 2015).

Los eventos de sequía tienen múltiples características, las cuales pueden ser definidas en base al SPI: duración, intensidad, severidad e interarrival (Mckee et al. 1993; Shiau 2006; Santos et al. 2011; Xu et al. 2014; Masud et al. 2015). Los cambios en cada una de estas características pueden generar impactos en el manejo de los recursos hídricos y la agricultura; en general, las sequías intensas aun con pequeñas o medianas duraciones pueden tener fuertes impactos en la agricultura, mientras sequías de mediana intensidad con largas duraciones pueden tener serios efectos en la provisión de agua (Ge et al. 2016).

En este contexto, el presente Atlas de sequía de la Región Hidrográfica del Titicaca, presenta información sobre las características de las sequías hidrológicas para el periodo 1985-2015 en términos de severidad, duración y periodos de retorno, utilizando el método de cópulas de la familia de cópulas Arquimedianas para analizar las dependencia y la probabilidad bivariada mediante los periodos de retorno para la ocurrencia de eventos de sequía de severidad y duración dadas.

Por tanto, los objetivos del presente estudio son:

- Caracterizar espacial y temporalmente la sequía hidrológica en cuencas de la región hidrográfica del Titicaca mediante el índice estandarizado de caudales (SSFI).

- Evaluar la dependencia entre la severidad y la duración y la probabilidad bivariada para las cuencas Huancané, Ramis, Coata, Illpa e Ilave.
2. EL MARCO TEÓRICO

2.1. Sequías

Tallaksen y Lanen (2004), definieron la sequía como la ocurrencia de disponibilidad de agua por debajo del promedio natural de manera sostenida y a escala regional. Las sequías están generalmente asociadas con un periodo continuo de precipitaciones escasas, baja humedad del suelo o disponibilidad de agua, en relación a los niveles normales en una determinada localidad y a los cuales la comunidad afectada está acostumbrada. A pesar de que la sequía es un componente natural del clima, en las regiones climáticas áridas y semiáridas, también puede ocurrir en áreas que normalmente reciben adecuada precipitación (Makarau and Li 1994). La definición basada en la desviación de las condiciones normales o de estados de referencia implica que las sequías pueden ocurrir en cualquier región hidroclimatológica y en cualquier parte del año con la misma probabilidad. Para propósitos prácticos, la sequía puede ser clasificada en: meteorológica, hidrológica, agrícola y subterránea (Wilhite and Glantz 1985).

2.1.1. Sequía meteorológica

La principal causa de una sequía es el déficit de precipitación sobre un área extensa y por periodo de tiempo considerable, a lo cual se le denomina sequía meteorológica; este déficit es usualmente expresado como un valor relativo respecto a las condiciones climáticas normales. El déficit de agua se propaga a través del ciclo hidrológico y da lugar a los diferentes tipos de sequía (Tallaksen and Lanen 2004).

2.1.2. Sequía hidrológica

El déficit de precipitación en un periodo prolongado resultará en una deficiencia de escorrentía, aguas subterráneas o de los niveles de reservorios, lo cual es conocido como sequía hidrológica, la cual persistirá por un periodo de tiempo determinado, después de que la sequía meteorológica haya terminado.

2.1.3. Sequía agrícola

La deficiencia de agua en el suelo combinado con altas tasas de evaporación podría causar el desarrollo de una sequía. El término sequía agrícola es usado cuando la humedad del suelo es insuficiente para mantener los cultivos (Tallaksen and Lanen 2004). Debido a que la cantidad de agua que necesita cada cultivo es distinta, no es posible establecer umbrales de sequía agrícola válidos ni tan siquiera para una única área geográfica (Valiente 2001).

2.1.4. Sequía subterránea

La sequía subterránea, es una clase distinta de sequía, no una subclase de la meteorológica, hidrológica o agrícola. Cuando los sistemas de aguas subterráneas son afectados por las sequías, decrecen primero las recargas y luego los niveles y descargas de aguas subterráneas (Van Lanen and Peters 2000). La sequía subterránea se da como consecuencia de una recarga insuficiente.
2.2. Análisis de Cópulas

Las Cópulas son funciones que vinculan distribuciones de probabilidad univariadas para formar funciones de distribución multivariadas. La construcción de estas distribuciones se reduce al estudio de la relación entre variables aleatorias correlacionadas dadas las distribuciones marginales.

En ingeniería, las cópulas se usan en el control de procesos multivariados y en el modelado hidrológico. Investigaciones recientes se han centrado en una clase de cópulas llamada cópulas Arquimedianas, la cual agrupa varias familias de modelos cópula, con propiedades analíticas más sencillas. Muchas distribuciones bivariadas conocidas pertenecen a la clase de cópulas Arquimedianas. Estas cópulas son analíticamente sencillas y sus elementos tienen propiedades estocásticas que los hacen atractivos para el tratamiento estadístico de los datos. Además, las cópulas Arquimedianas pueden describir una gran diversidad de estructuras de dependencia.

Podemos resumir que las etapas que encontraremos en el proceso de selección de cópulas y que a continuación pasaremos a detallar son las siguientes:

1. Determinación de las distribuciones marginales asociadas a cada una de las variables en función de las muestras de datos disponibles.
2. Propuesta de un conjunto inicial de cópulas candidatas que, por sus características, se perfilan como adecuadas para reflejar la relación existente entre las variables. Esta propuesta se hará de acuerdo al conocimiento que se tenga sobre la forma de dicha relación.
3. Elección de la cópula de entre todas las que representan a las candidatas.

2.3. Distribuciones Marginales

El análisis univariante conlleva la especificación de funciones de distribución asociadas a cada una de las variables. Así, para el presente estudio se probó el ajuste de las series de severidad y duración de las sequías a diferentes distribuciones marginales.

2.4. Distribuciones marginales para Severidad

2.4.1. Valor Extremo Generalizado (GEV)

La distribución del valor extremo generalizado (GEV) es una familia de distribuciones de probabilidad continuas desarrolladas dentro de la teoría del valor extremo para combinar las familias Gumbel, Fréchet y Weibull.

Utilizando la variable estandarizada \(s = (x - \mu) / \sigma \), donde \(\mu \in \mathbb{R} \) es el parámetro de ubicación, \(\sigma > 0 \) es el parámetro de escala y \(\xi \in \mathbb{R} \) es el parámetro de forma, la función de densidad de probabilidad:

\[
f(s; \sigma, \xi) = \begin{cases}
\frac{1}{\sigma} \left(1 + \frac{\xi s}{1/\xi} \right)^{-1} \exp\left(-\left(1 + \frac{\xi s}{1/\xi} \right) \right) & \xi \neq 0 \\
\exp(-s) \exp(-\exp(-s)) & \xi = 0
\end{cases}
\]
2.4.2. Logístico Generalizado (GLO)

La distribución logística es una distribución importante utilizada en modelamiento estadístico. En literatura, la distribución logística juega un papel importante en el modelado de datos extremos. Así, la variable aleatoria X tiene distribución logística con parámetro de ubicación μ y parámetro de escala $\sigma > 0$ si su función de densidad de probabilidad es:

$$f(x; \mu, \sigma) = \frac{e^{\frac{x-\mu}{\sigma}}}{\sigma \left(1 + e^{\frac{x-\mu}{\sigma}}\right)^2}; \quad -\infty < x < \infty.$$

2.4.3. Pareto Generalizado (GPA)

La distribución de Pareto generalizada es una familia de distribuciones de probabilidad continuas. A menudo se usa para modelar las colas de otra distribución. La función de densidad de probabilidad está dada por:

$$f_{\xi, \mu, \sigma}(x) = \frac{1}{\sigma} \left(1 + \frac{\xi(x-\mu)}{\sigma}\right)^{-\frac{1}{\xi}-1},$$

Donde, x es la variable aleatoria, μ es el parámetro de ubicación, σ es el parámetro de escala y ξ es el parámetro de forma.

2.4.4. Distribución Gumbel (GUM)

La distribución de Gumbel (distribución de valor extremo generalizado tipo I) se utiliza para modelar la distribución del máximo (o el mínimo) de un número de muestras de diversas distribuciones. Esta distribución podría usarse para representar la distribución del nivel máximo de un río en un año particular si hubiera una lista de valores máximos para los últimos diez años. La función de densidad de probabilidad está dada por:

$$f(x) = e^{-(x+e^{-x})}.$$

2.5. Distribuciones Marginales para la Duración

2.5.1. Distribución Exponencial

Algunas secuencias de eventos hidrológicos, como la ocurrencia de precipitación, pueden considerarse como procesos de Poisson, en los cuales los eventos ocurren instantánea e independientemente en el tiempo, o a lo largo de una línea. El tiempo entre tales eventos, o tiempo de interarro, está descrito por una distribución exponencial cuyo parámetro λ es la tasa media de ocurrencia de los eventos.

El tiempo de ocurrencia de fenómenos como la precipitación, pueden considerarse como procesos de Poisson ya que los eventos ocurren instantánea e independientemente en un horizonte de tiempo, a lo largo de la línea. El tiempo entre dichos eventos lo describe la
distribución exponencial.

La función de densidad de probabilidad se muestra en la ecuación:

\[f(x) = \lambda e^{-\lambda x} \]

Donde, \(x \) representa la variable y \(\lambda \) es el parámetro de la distribución.

2.5.2. Distribución Weibull

La distribución de Weibull es una distribución de probabilidad continua. Lleva el nombre del matemático sueco Waloddi Weibull, quien lo describió en detalle en 1951 y Rosin y Rammler lo utilizaron por primera vez (1933) para describir una distribución de tamaños de partículas.

La función de densidad de Weibull para una variable aleatoria está dada por:

\[
 f(x; \lambda, k) = \begin{cases}
 \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} & x \geq 0, \\
 0 & x < 0,
 \end{cases}
\]

Donde, \(k > 0 \) es el parámetro de forma y \(\lambda > 0 \) es el parámetro de escala de la distribución.

2.5.3. Distribución Log-normal

Una distribución log-normal (o lognormal) es una distribución de probabilidad continua de una variable aleatoria cuyo logaritmo se distribuye normalmente. Por lo tanto, si la variable aleatoria \(X \) tiene una distribución logarítmica normal, entonces \(Y = \ln (X) \) tiene una distribución normal. Del mismo modo, si \(Y \) tiene una distribución normal, entonces la función exponencial de \(Y, X = \exp (Y) \), tiene una distribución log-normal.

La distribución log-normal tiende a la función densidad de probabilidad:

\[
 f(x; \mu, \sigma) = \frac{1}{x \sigma \sqrt{2\pi}} e^{-\left(\ln(x) - \mu\right)^2/2\sigma^2}
\]

Para \(x > 0 \), donde \(\mu \) y \(\sigma \) son la media y la desviación estándar del logaritmo de la variable.

2.6. Cópulas Arquimedianas

Existe una gran diversidad de familias que pertenecen a la clase arquimediante y gracias a esta variedad permiten, a diferencia de las elípticas (simétricas) y de las de valor extremo (muy orientadas a dependencias en las colas), recoger muchos tipos de estructuras de dependencia adicionales. Otra ventaja de este tipo de cópulas es la facilidad con la que pueden ser construidas.
Se han creado muchos tipos de cópulas que forman parte de la familia de cópulas Arquimedianas entre los que se encuentran las cópulas de Frank, Clayton y Gumbel entre otras.

2.6.1. Cópula de Frank

La función de distribución para la cópula de Frank está dada por:

\[C_a(u, v) = -\frac{1}{a} \ln \left(1 + \frac{e^{-\alpha u} - 1}{e^{-\alpha} - 1} \right) \]

Y la función de densidad:

\[C(u, v) = -ag_1 \left(\frac{1 + g_{u+v}}{g_u g_v + g_1^2} \right) \]

Para evaluar el grado de asociación entre las marginales en el modelo generado por la cópula de Frank, el coeficiente de correlación de Kendall correspondiente está dada por:

\[\tau(a) = 1 - \frac{4}{a} + \frac{4}{a^2} \int_0^a \frac{t}{e^t - 1} dt \]

La integral en esta expresión no tiene solución analítica, sin embargo, es posible usar métodos numéricos, que pueden dar buenas aproximaciones. La \(\tau \) de Kendall de la cópula de Frank toma valores en el rango completo de concordancia.

Simulación de una cópula de Frank Para simular la cópula de Frank podemos utilizar el algoritmo siguiente:

Simulamos dos variables aleatorias uniformes \(v_1 \) y \(v_2 \);

\[u_2 = C^{-1}(v_2, u_1; \alpha) = -\frac{1}{\alpha} \ln \left(1 + \frac{v_2(e^{-\alpha} - 1)}{v_2 + (1 - v_2)e^{\alpha u_1}} \right) \]

2.6.2. Cópula de Gumbel

La función de distribución para la cópula de Gumbel es:

\[C_a(u, v) = \exp \left(- \left[(-\ln u)^a + (-\ln v)^a \right]^{\frac{1}{a}} \right) \]

La función de densidad:

\[c(u, v) = C(u, v) u^{-1} v^{-1} \left[(-\ln u)^a + (-\ln v)^a \right]^{-2+\frac{2}{a}} \left[\ln u \ln v \right]^{a-1} \left[1 + (a+1) \left[(-\ln u)^a + (\ln v)^a \right]^{-\frac{1}{a}} \right] \]

El coeficiente de correlación de Kendall, en función de su parámetro \(a \), se define como:

\[\tau_a = 1 - \frac{1}{a} \]
Simulación de la cópula de Gumbel Para simular la cópula logística de Gumbel utilizamos el método de distribuciones.

2.6.3. Copula de Clayton

La función de distribución para la cópula de Clayton es:

\[C_a(u, v) = \left(u^{-\frac{1}{a}} + v^{-\frac{1}{a}} - 1 \right)^a \]

La función derivada de la cópula respecto de la componente \(u \) es:

\[C_1 = \left(\frac{\partial C_a(u, v)}{\partial u} \right) = u^{-1+\frac{1}{a}} \left[u^{-\frac{1}{a}} + v^{-\frac{1}{a}} - 1 \right]^{a-1} \]

y la densidad:

\[C(u, v) = \left(1 + \frac{1}{a} \right) (u \cdot v)^{-1-\frac{1}{a}} \left[u^{-\frac{1}{a}} + v^{-\frac{1}{a}} - 1 \right]^{a-2} \]

El coeficiente de correlación de Kendall, en función de su parámetro \(a \), se define como:

\[\tau(a) = \frac{1}{2a + 1} \]

2.6.4. Cópula de Joe

Joe (1997) definió la siguiente cópula:

\[C(u_1, u_2) = \exp \left\{ - \frac{\theta_2^{-1}}{\theta_1} \log \left(\exp \left(-\theta_2 (\log u_1)^{\theta_1} \right) + \exp \left(-\theta_2 (\log u_2)^{\theta_1} \right) - 1 \right) \right\}^{\frac{1}{\theta_1}} \]

2.7. Selección de la Cópula de mejor ajuste

En un primer paso, se determinaron varios tipos de cópulas como candidatas a reflejar un tipo de relación entre las variables de estudio: Cópula de Frank, Cópula de Gumbel, Cópula de Clayton y Cópula de Galambos. Dentro de cada una de ellas, se selecciona aquel miembro (normalmente dado por el valor de uno o varios parámetros) que mejor refleja una relación concreta (la observada en los datos). Finalmente se decidió aquella cópula que, en función del criterio de información Akaike, proporcione mejores resultados.

– Criterio de AIC

El Criterio de información Akaike (AIC, por sus siglas en inglés) es un estadístico de bondad de ajuste que tiene en el fondo información de entropía y representa una medida relativa de información perdida en el sistema. El AIC se define como:

\[\text{AIC}(m) = n \log(\text{MSE}) + 2m \]

Donde, \(n \)=número de observaciones; \(m \)=número de parámetros ajustados

Para definir la cópula de mejor ajuste, se eligió la distribución con el AIC más bajo.
3. MATERIALES Y MÉTODOS

3.1. Área de estudio

El área de estudio corresponde a las cuencas hidrográficas del río Huancané, Ramis, Coata, Illpa e Ilave, situadas en la parte peruana de la región hidrográfica del Lago Titicaca (Figura 3-1), que forma parte del Altiplano del Sur de América y está ubicado al sur del Perú, entre la latitud (13°S - 17°S) y longitud (69°W – 71W). La región hidrográfica del Lago Titicaca limita por el norte con la región hidrográfica del Amazonas, por el este y sur con la región hidrográfica del Pacífico y por el oeste con la república de Bolivia. Política y administrativamente la zona de estudio se encuentra en el departamento de Puno.

La cuenca del Lago Titicaca es uno de los sistemas hidrológicos activos y separados que se distinguen en la cuenca endorreica del Altiplano: el Lago Titicaca (3809.5 m.s.n.m.) vierte al Lago Poopó (3686 m.s.n.m.) por intermedio del río Desaguadero. El río Desaguadero que comienza en el Lago Titicaca (parte Boliviana), después de un recorrido de 398 km desemboca en el lago Poopó.

La superficie total de la hondonada del lago Titicaca, hasta el comienzo del Desaguadero, es de 56300 km² (incluidas las aguas superficiales); de esta superficie de la cuenca, las tres cuartas partes están en el Perú (subregión de Puno) y el resto en Bolivia (departamento de La Paz). La superficie de la cuenca de drenaje del lago Titicaca es de 47900 km², o sea, el 85% de la cuenca total, 1/5 de la cual situada en Bolivia y 4/5 en el Perú.

En la Figura 3-1 se muestra la región hidrográfica del Titicaca, parte peruana; y la red hidrométrica de los principales ríos aportantes al Lago Titicaca (Huancané, Ramis, Coata e Ilave).
3.2. Climatología

Sanabria et al., (2009) describió la climatología en el Altiplano (Región Hidrográfica del Titicaca) y menciona que la precipitación está restricta a los meses de noviembre a marzo acumulando valores entre 500 a 900 mm/año, así mismo menciona que las condiciones térmicas están caracterizadas por temperaturas máximas absolutas que oscilan entre 14 a 18 °C y mínimas entre -7 a 3 °C y las temperaturas medias que oscilan entre 4 a 9 °C. Estos valores fueron actualizados en el Atlas Clima y eventos extremos del Altiplano Central Perú-boliviano, considerando una climatología de 1981-2010, como se muestra en la Figura 3-2 y Figura 3-3.

La mayor parte de la precipitación (>70%) se produce durante el verano austral [diciembre a febrero (DEF)]; cuando los vientos del este de nivel medio (600 hPa) y superior (200 hPa), trae aire húmedo y alimentan las tormentas convectivas sobre la meseta del altiplano (Garreaud 1999; Falvey and Garreaud 2005). La precipitación de verano exhibe variabilidad sinóptica significativa, explicado en gran medida por la humedad de la capa límite local y el viento zonal en alto nivel de 200 hPa (cerca de 12000 m.s.n.m.) (Garreaud and Aceituno 2001b). El resto del año el Altiplano está influenciado por el flujo de viento del oeste de nivel medio (600 hPa) y alto (200 hPa), que trae el aire muy seco desde el Pacífico y las precipitaciones son casi inexistentes (Vuille and Ammann 1997). Una característica importante es que a lo largo del lado oeste de la región de estudio, próxima a la Cordillera Occidental,
casi el 100% de la precipitación ocurre durante la temporada húmeda extendida, lo que quiere decir que hay muy poca precipitación en la temporada seca extendida.

A escalas de tiempo interanuales, hay una tendencia a una mayor (menor) precipitación en toda la cuenca durante los años de La Niña (El Niño) que también se explica en gran medida por la intensidad de la circulación zonal en alto nivel (Garreaud and Aceituno 2001a; Vuille and Keimig 2004).

En cuanto a las tendencias hidrológicas a escala interanual en la Vertiente del Titicaca Lavado Casimiro et al., (2012) encuentran que no hay cambios y tendencias significativas en cuanto a la precipitación, escorrentía media, escorrentía máxima, pero sí en la escorrentía mínima en la cuenca del río Ramis; donde el incremento de esta puede ser asociado con el derretimiento acelerado de los glaciares debido al cambio climático.

Asimismo, en el Altiplano se observaron fuertes alteraciones climáticas particularmente entre 1981 y 2010. De hecho, los análisis de tendencias con datos de temperatura de estaciones con al menos 80% de mediciones válidas en este período indican un calentamiento. En promedio, se calcula una tendencia positiva estadísticamente significativa de +0,22°C (con una incertidumbre de 0,07°C) por década para la temperatura mínima, y para la temperatura máxima se observa un calentamiento aún más fuerte con una tendencia promedio estadísticamente significativa de +0,40°C (con una incertidumbre de 0,10°C) por década.

Para el presente estudio se utilizaron las series de caudales simulados mediante el modelamiento hidrológico de las cuencas de estudio con el modelo SWAT (Soil and Water Assessment Tool), el procedimiento empleado para la simulación se resume en la sección de metodología del presente estudio.

Así, para el presente estudio, se tienen disponibles las series de caudales de las cuencas de los ríos Huancané, Ramis, Coata, Illpa e Ilave para el periodo de estudio de 1985-2015. Teniendo en cuenta que se tienen estaciones hidrológicas en todas las cuencas de estudio a excepción de la cuenca Illpa, en la cual se simularon los caudales para una estación ficticia; los detalles de las estaciones hidrológicas se muestran en la Tabla 3-1.

<table>
<thead>
<tr>
<th>N</th>
<th>Id estación</th>
<th>Nombre</th>
<th>Río</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Altitud</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>210201</td>
<td>Puente Huancané</td>
<td>Huancané</td>
<td>-15,216</td>
<td>-69,793</td>
<td>3830</td>
<td>Funcionando</td>
</tr>
<tr>
<td>2</td>
<td>210101</td>
<td>Puente Ramis</td>
<td>Ramis</td>
<td>-15,256</td>
<td>-69,874</td>
<td>3821</td>
<td>Funcionando</td>
</tr>
<tr>
<td>3</td>
<td>210407</td>
<td>Puente Unocolla</td>
<td>Coata</td>
<td>-15,451</td>
<td>-70,191</td>
<td>3835</td>
<td>Funcionando</td>
</tr>
<tr>
<td>4</td>
<td>210301</td>
<td>Puente Ilave</td>
<td>Ilave</td>
<td>-16,088</td>
<td>-69,626</td>
<td>3850</td>
<td>Funcionando</td>
</tr>
<tr>
<td>5</td>
<td>-----</td>
<td>Illpa</td>
<td>Illpa</td>
<td>-15,704</td>
<td>-70,049</td>
<td>3820</td>
<td>Ficticia</td>
</tr>
</tbody>
</table>
3.4. Metodología

3.4.1. Modelamiento Hidrológico

El presente estudio utiliza los resultados del estudio denominado Modelamiento Hidrológico de la Vertiente del Titicaca, elaborado por (Fernandez-Palomino 2017). En dicho estudio, el modelo hidrológico para las cuencas del río Huancané, Ramis, Coata, Illpa e Ilave fue desarrollado usando el modelo SWAT 2012.

Para el modelamiento se utilizaron como datos de ingreso: los registros de las estaciones hidrológicas administradas por SENAMHI, datos grillados meteorológicos (precipitación, temperatura máxima y mínima) del producto PISCO (Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations) versión 2.0 del SENAMHI (Aybar et al. 2017), modelo digital de elevación (DEM) del producto SRTM v4.1 y datos globales de suelo y uso de suelo.

La configuración de los componentes del modelo SWAT relacionados con la simulación de descargas considera los siguientes métodos: la evapotranspiración potencial (ETP) fue estimada por el método de Hargreaves, la escorrentía superficial fue estimada utilizando el método del número de curva del SCS (USDA Soil Conservation Service 1972), el flujo lateral desde el perfil de suelo no saturado se estimó por el modelo de almacenamiento cinemático (Sloan and Moore 1984) mientras tanto el flujo de retorno desde el acuífero superficial y profundo fue simulado de acuerdo a Arnold et al. (1998).

Los valores óptimos de los parámetros de SWAT que fueron calibrados en el proceso de calibración manual se muestran en la Tabla 3-2. Esta tabla nos muestra que a pesar de la complejidad del modelo SWAT; solamente 4 (5) parámetros fueron calibrados en la cuenca del río Huancané, Coata e Illpa (Ramis e Ilave).

<table>
<thead>
<tr>
<th>Orden</th>
<th>Código del parámetro</th>
<th>Descripción</th>
<th>Valor ajustado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Huancané</td>
</tr>
<tr>
<td>1</td>
<td>r__CN2.mgt</td>
<td>Número de curva</td>
<td>0,12</td>
</tr>
<tr>
<td>2</td>
<td>v__SURLAG.hru</td>
<td>Coeficiente de retraso de la escorrentía superficial</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>v__ESCO.hru</td>
<td>Factor de compensación de la evaporación del suelo</td>
<td>0,80</td>
</tr>
<tr>
<td>4</td>
<td>r__SOL_AWC().sol</td>
<td>Capacidad de agua disponible en el suelo</td>
<td>0,7</td>
</tr>
<tr>
<td>5</td>
<td>v__RCHRG_DP.gw</td>
<td>Fracción de recarga hacia el acuífero profundo</td>
<td>0,40</td>
</tr>
</tbody>
</table>

El desempeño del modelo SWAT en la caracterización de las descargas medias mensuales es muy bueno con respecto a NSE (>0.75) y PBIAS (< 10%) en ambas etapas (calibración y validación). El buen desempeño del modelo en la caracterización de la dinámica de las descargas...
observadas sugiere que el modelo puede ser adecuado para evaluar incluso eventos extremos, como es el caso del presente estudio.

Tabla 3-3: Estadísticas de medida de desempeño del modelo SWAT en la etapa de calibración y validación a paso mensual

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NSE</td>
<td>PBIAS</td>
</tr>
<tr>
<td>Huancané</td>
<td>Puente Jujuy</td>
<td>0,79</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>Puente Ramis</td>
<td>0,86</td>
<td>-12,4</td>
</tr>
<tr>
<td></td>
<td>Puente Azángaro</td>
<td>0,71</td>
<td>17,7</td>
</tr>
<tr>
<td>Coata</td>
<td>Puente Unocolla</td>
<td>0,79</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>Puente Mocayache</td>
<td>0,8</td>
<td>-0,2</td>
</tr>
<tr>
<td>Illpa</td>
<td>Puente Ilave</td>
<td>0,86</td>
<td>-3,3</td>
</tr>
</tbody>
</table>

El estudio de Fernandez-Palomino 2017, en base al modelo SWAT calibrado, realiza una caracterización de los diferentes procesos hidrológicos; siendo la precipitación, la escorrentía superficial, el flujo base (el flujo lateral más el flujo de retorno desde los acuíferos) y la evapotranspiración los elementos más importantes del balance hídrico. Así, los valores del promedio anual de los componentes del balance hídrico (1985-2015) se muestran en la Tabla 3-4.

<table>
<thead>
<tr>
<th>Componentes del balance hídrico anual (Periodo 1985-2015)</th>
<th>Huanancé</th>
<th>Ramis</th>
<th>Coata</th>
<th>Ilave</th>
<th>Ilpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área de la cuenca (A) [km^2]</td>
<td>3540</td>
<td>14590</td>
<td>4435</td>
<td>7764</td>
<td>1207</td>
</tr>
<tr>
<td>Aporte al sistema</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total aporte al sistema [TAS] [mm]</td>
<td>636,9</td>
<td>700,6</td>
<td>688,5</td>
<td>575,4</td>
<td>675,8</td>
</tr>
<tr>
<td>Precipitación [R] [mm]</td>
<td>636,6</td>
<td>700,1</td>
<td>687,6</td>
<td>574,4</td>
<td>675,6</td>
</tr>
<tr>
<td>Nieve [mm]</td>
<td>0,3</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Derretimiento de la nieve [mm]</td>
<td>0,3</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Pérdida del sistema hacia la atmósfera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pérdida total hacia la atmósfera (ET_total) [mm]</td>
<td>470,0</td>
<td>541,7</td>
<td>446,7</td>
<td>449,8</td>
<td>491,8</td>
</tr>
<tr>
<td>Sublimación</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Evapotranspiración real (ET) [mm]</td>
<td>470,0</td>
<td>541,7</td>
<td>446,7</td>
<td>449,8</td>
<td>491,8</td>
</tr>
<tr>
<td>Rendimiento en la salida de la cuenca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendimiento hídrico (WYLD=Qsurf+Qlat+Qgws+Qgwd-Tlosses) [mm]</td>
<td>166,9</td>
<td>158,9</td>
<td>241,8</td>
<td>125,6</td>
<td>184,0</td>
</tr>
<tr>
<td>Pérdida por transmisión en los canales [Tlosses] [mm]</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Contribución de escorrentía superficial [Qsurf] [mm]</td>
<td>55,7</td>
<td>42,1</td>
<td>85,2</td>
<td>40,9</td>
<td>61,7</td>
</tr>
<tr>
<td>Contribución de flujo base (FB=Qlat+Qgws+Qgwd) [mm]</td>
<td>111,1</td>
<td>116,8</td>
<td>156,7</td>
<td>84,7</td>
<td>122,3</td>
</tr>
<tr>
<td>Flujo Lateral [Qlat] [mm]</td>
<td>35,0</td>
<td>47,9</td>
<td>47,2</td>
<td>33,3</td>
<td>25,6</td>
</tr>
<tr>
<td>Flujo de retorno desde el acuífero superficial [Qgws] [mm]</td>
<td>37,9</td>
<td>34,4</td>
<td>83,7</td>
<td>24,5</td>
<td>61,6</td>
</tr>
<tr>
<td>Flujo de retorno desde el acuífero profundo [Qgwd] [mm]</td>
<td>38,2</td>
<td>34,5</td>
<td>25,8</td>
<td>26,9</td>
<td>35,2</td>
</tr>
</tbody>
</table>

3.4.2. Caracterización de sequías Hidrológicas

3.4.2.1. Índice SSFI

En la actualidad existe un gran número de índices para cuantificar las sequías, tales como el índice de sequía de caudales. Para el presente estudio se utilizó el denominado Índice estandarizado de caudales (SSFI por sus siglas en inglés), a fin de cuantificar las características
de las sequías hidrológicas en términos de la duración y la severidad. Este índice fue aplicado en otros estudios como el de Modarres (2007).

El SSFI es similar al índice SPI creado por (Mckee et al. 1993). El SSFI para un periodo determinado es definido como la diferencia entre el caudal y la media dividido entre la desviación estándar, como sigue:

\[
SSFI = \frac{F_i - \bar{F}}{\sigma}
\]

Donde, Fi es la tasa de caudal en el intervalo de tiempo i, \(\bar{F}\) es la media de la serie y \(\sigma\) es la desviación estándar de la serie. Para series mensuales, el SSFI se estima de la siguiente manera:

\[
SSFI_t = \frac{F_{vt} - \bar{F}_t}{\sigma_t}
\]

Donde

\[
\bar{F}_t = \frac{1}{n} \sum_{v=1}^{N} F_{v,t}, \quad t = 1, \ldots, \omega
\]

\[
\sigma_t = \sqrt{\frac{1}{n-1} \sum_{v=1}^{n} (F_{v,t} - \bar{F}_t)^2}
\]

Donde v representa el año y t representa el intervalo de tiempo dentro de un año, \(\bar{F}_t\) y \(\sigma_t\) son la media y desviación estándar del mes t, finalmente \(\omega=12\).

La clasificación de eventos de sequías basada en los valores del índice SSFI se muestra en la Tabla 3-5.

<table>
<thead>
<tr>
<th>Valor del índice</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0 a más</td>
<td>Extremadamente húmedo</td>
</tr>
<tr>
<td>1,5 a 1,99</td>
<td>Muy húmedo</td>
</tr>
<tr>
<td>1,0 a 1,49</td>
<td>Moderadamente húmedo</td>
</tr>
<tr>
<td>-0,99 a 0,99</td>
<td>Cercado a lo Normal</td>
</tr>
<tr>
<td>-1,0 a -1,49</td>
<td>Moderadamente seco</td>
</tr>
<tr>
<td>-1,5 a -1,99</td>
<td>Severamente seco</td>
</tr>
<tr>
<td>-2,0 o menos</td>
<td>Extremadamente seco</td>
</tr>
</tbody>
</table>

3.4.2.2. Determinación de la duración y severidad

Para definir los eventos de sequía hidrológica se consideró la teoría de corridas, definiendo como umbral el valor de -0.5 para el índice SSFI. Una corrida es definida como la proporción en la serie
de tiempo de sequía, durante la cual los valores están por encima o por debajo del umbral (Figura 3-4).

La duración se definió como el periodo consecutivo e ininterrumpido de tiempo con valores del índice por debajo del umbral. Se cuantifica en meses.

La severidad se definió como la suma de los déficits de un evento de sequía. Se cuantifica en unidades de desviaciones estándar y se consideraron como valor absoluto para los cálculos posteriores.

Figura 3-4. Definición de eventos de sequía, duración y severidad

3.4.3. Determinación de Distribuciones Marginales

La distribución exponencial para la duración de la sequía y la distribución de Gamma para la severidad de la sequía son las distribuciones de probabilidad más comunes (Shiau and Modarres 2009). Sin embargo, hay algunos estudios recientes que indican la idoneidad de diferentes distribuciones de probabilidad para la duración y la severidad de la sequía (Yusof et al., 2013; Sadri y Burn, 2014). Por lo tanto, varias distribuciones de probabilidad candidatas se consideran en este estudio.

Para la determinación de las distribuciones marginales se propusieron distribuciones candidatas tanto para la severidad como para la duración. Para la severidad se propusieron como distribuciones candidatas: valor extremo generalizado (GEV), logístico generalizado (GLO), Pareto Generalizado (GPA) y Gumbel (GUM); asimismo, para el ajuste de los datos de duración se propusieron las distribuciones: exponencial (EXP), log-normal (LNO) y Weibull (WEI).

Para el ajuste de la severidad, se estimaron los parámetros con el método de L-momentos, utilizando para ello la función distLfit del paquete extremeStat en el software R; asimismo, la selección de la distribución marginal de mejor ajuste se realizó en base al test de Kolmogorov–Smirnov (KS) y el error cuadrático medio (RMSE).
3.4.4. Análisis de probabilidad bivariada

Debido a que las sequías son eventos con múltiples atributos, el análisis de estos eventos evolucionó de univariado a bivariado (Salas et al. 2005; Mishra et al. 2009), en este contexto, se plantea el uso de las copulas puesto que permite formar una distribución conjunta y realizar un mejor análisis de las características de las sequías. Una función de distribución acumulada bivariada (CDF), $F_{X,Y}(x,y)$, de dos variables aleatorias correlacionadas, es decir, (1) X y (2) Y, con CDF marginales $F_X(x)=P(X \leq x)$ y $F_Y(y)= P(Y \leq y)$, respectivamente, pueden expresarse en términos de la función cópula C

$$F_{X,Y}(x,y) = C[F_X(x)F_Y(y)] = C(u,v)$$

Donde, $F_{X,Y}(x,y)= \text{CDF conjunta de las variables aleatorias } X \text{ e } Y$, $u= F_X(x)$ y $v= F_Y(y)$, respectivamente.

Una vez definidas las distribuciones marginales tanto para la severidad como para la duración, se procedió a evaluar la cópula de mejor ajuste entre las cuatro cópulas propuestas (Clayton, Frank, Gumbel y Joe). Para estimación de los parámetros de la cópula se utilizó la función fitCopula del paquete cópula en el software R, el cual estima los parámetros por diferentes métodos, entre los cuales se eligió el método Inversión del estimador tau de Kendall (“itau”), cuyo procedimiento se detalla en (Genest et al. 2013). Para identificar el modelo de cópula apropiado, se utilizó el criterio de información Akaike, para evaluar el rendimiento de las cópulas ajustadas. La cópula empírica se puede calcular a partir de los datos observados. Se eligieron las cópulas con el menor valor de AIC.

3.4.5. Curvas SDF

La relación entre la severidad de la sequía, la duración y la frecuencia en términos de intervalo de recurrencia para eventos de sequía se puede representar por el intervalo de recurrencia condicional (Shiau et al. 2007), dado por:

$$T_{S|D}(s|d) = \frac{1}{\gamma[1 - F_{S|D}(s|d)]}$$

Donde s y d = severidad y duración de la sequía, respectivamente; $F_{S|D}(s|d)$ es el CDF condicional de S, dado D = d; $T_{S|D}(s|d)$ es el intervalo de recurrencia condicional de S dado D = d y Y = tasa de llegada de eventos de sequía que deben ajustarse a los datos observados.

La CDF condicional está dada por:
Donde $F_D(d)$ es el CDF de duración de sequía; y $F_{S,D}(s,d)$ es la CDF conjunta de la severidad y duración de la sequía que se obtuvo mediante cópula.

4. **RESULTADOS**

4.1. Índice Estandarizado de Caudales SSFI

La Figura 4-1 muestra las series del SSFI para las cinco cuencas de estudio, considerando una escala de 3 meses y un periodo de estudio de 1985-2015. Se aprecia un comportamiento similar de los eventos secos más resaltantes en todas las cuencas. Asimismo, se distingue un periodo seco de gran duración alrededor de los años noventa, el cual coincide en la mayoría de las cuencas.

![Figura 4-1. Series de tiempo del SSFI de los caudales a la salida de las cuencas de estudio](image-url)
4.2. Características de las sequías hidrológicas

Las características de severidad y duración estimadas a partir del SSFI para cada cuenca se resumen en la Tabla 4-1, siendo la cuenca Coata la que presentó mayores valores de severidad y duración durante el periodo de estudio, en comparación con las demás cuencas de la región del Lago Titicaca. Asimismo, se evidenció una fuerte correlación lineal entre la severidad y la duración con valores de correlación entre 0,97 y 0,99, lo cual muestra la fuerte dependencia de ambas variables; sin embargo, la tasa de incremento de la severidad varía de una cuenca a otra, siendo mayor en la cuenca Ramis, en comparación con las demás cuencas en estudio. La Figura 4-2 muestra los valores de duración y severidad para cada cuenca con su respectivo modelo lineal.

![Gráfica de severidad versus duración](image)

Figura 4-2. Severidad versus la Duración para cada cuenca de estudio

<table>
<thead>
<tr>
<th>Característica</th>
<th>Estadístico</th>
<th>Huancañé</th>
<th>Ramis</th>
<th>Coata</th>
<th>IIPa</th>
<th>Ilave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severidad</td>
<td>Mediana</td>
<td>2,7</td>
<td>3,2</td>
<td>4,8</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>Mínimo</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Máximo</td>
<td>15,8</td>
<td>59,7</td>
<td>26,0</td>
<td>28,5</td>
<td>25,4</td>
</tr>
<tr>
<td>Duración</td>
<td>Mediana</td>
<td>4</td>
<td>4</td>
<td>6,5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mínimo</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Máximo</td>
<td>16</td>
<td>48</td>
<td>25</td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>
4.3. Distribuciones marginales y Cópulas de mejor ajuste

Las distribuciones marginales que se ajustan mejor a los datos de severidad y duración de las sequías en las cuencas de estudio, se muestran en la Tabla 4-2. Así, la severidad tiene mejor ajuste a la distribución Gamma en tres de las cuencas (Huancané, Coata e Ilave), mientras que las severidades en Ramis e Illpa se ajustan mejor a Log normal y Pearson III, respectivamente. Por otro lado, la duración se ajusta mejor a Pareto generalizado en todas las cuencas a excepción de Illpa, donde se ajusta mejor a gamma.

De la misma manera, las cópulas de mejor ajuste para los datos de severidad y duración en cada cuenca, se presentan en la Tabla 4-3. Siendo la cópula Joe la que mejor modela la estructura de dependencia entre las características de las sequías en las cuencas de la región hidrográfica del Lago Titicaca, con excepción de la cuenca Coata, en la cual se ajustó mejor la copula de Frank.

<table>
<thead>
<tr>
<th>F. Marginal</th>
<th>Huancané</th>
<th>Ramis</th>
<th>Coata</th>
<th>Illpa</th>
<th>Ilave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severidad</td>
<td>gam</td>
<td>ln3</td>
<td>gam</td>
<td>pe3</td>
<td>gam</td>
</tr>
<tr>
<td>Duración</td>
<td>gpa</td>
<td>gpa</td>
<td>gpa</td>
<td>gam</td>
<td>gpa</td>
</tr>
</tbody>
</table>

Distribución gamma (gam), Pareto Generalizado (gpa), Log normal (ln3) y Pearson III (pe3)

<table>
<thead>
<tr>
<th>Cuencas</th>
<th>Huancané</th>
<th>Ramis</th>
<th>Coata</th>
<th>Illpa</th>
<th>Ilave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familia</td>
<td>Joe</td>
<td>Joe</td>
<td>Frank</td>
<td>Joe</td>
<td>Joe</td>
</tr>
<tr>
<td>parámetro</td>
<td>1,20</td>
<td>27,76</td>
<td>44,32</td>
<td>11,82</td>
<td>995</td>
</tr>
<tr>
<td>AIC</td>
<td>-68,57</td>
<td>-42,17</td>
<td>-70,51</td>
<td>-69,60</td>
<td>-57,74</td>
</tr>
<tr>
<td>Observaciones</td>
<td>25</td>
<td>16</td>
<td>20</td>
<td>25</td>
<td>23</td>
</tr>
</tbody>
</table>

4.4. Probabilidad bivariada

Debido a que las sequías son eventos con múltiples atributos (severidad y duración, entre otros), el análisis de estos eventos se realizó con enfoque bivariado mediante el uso de la técnica de copulas, puesto que, permite formar una distribución conjunta y realizar un mejor análisis de las características de las sequías.

Por tanto, para las cuencas Huancané, Ramis, Coata, Illpa e Ilave en las Figura 4-3 a 4-10 se muestran las distribuciones marginales y copulas de mejor ajuste respectivamente, así como la relación de la severidad y duración para periodos de retorno de 2 a 500 años.
4.4.1. Cuenca Huancané

La Figura 4-3 muestra el ajuste de los datos de severidad y duración a las tres mejores funciones de distribución marginales propuestas, incluyendo en la leyenda los valores del RMSE de cada distribución. Las funciones de mejor ajuste para la severidad y duración fueron gamma y Pareto generalizado, respectivamente. Asimismo, la Figura 4-4 muestra los periodos de retorno producto del ajuste de los valores de severidad y duración a la cópula Joe, observando mayores periodos de retorno en el caso de que ambos cuantiles sean superados en comparación con el caso en que alguno de los cuantiles sea superado.

![Figura 4-3. FDA de las tres distribuciones de mejor ajuste para la cuenca Huancané](image)

![Figura 4-4. FDA conjunta para la severidad y la duración de la cuenca Huancané. Eventos de S>=s y D>=d (izquierda) y para eventos de S>=s o D>=d (derecha).](image)
4.4.2. Cuenca Ramis

La Figura 4-5. Muestra el ajuste de los datos de severidad y duración a las tres mejores funciones de distribución marginales propuestas, incluyendo en la leyenda los valores del RMSE de cada distribución. Las funciones de mejor ajuste para la severidad y duración fueron Log normal y Pareto generalizado, respectivamente. Asimismo, la Figura 4-6 muestra los periodos de retorno producto del ajuste de los valores de severidad y duración a la cópula Joe.

Figura 4-5. FDA de las tres distribuciones de mejor ajuste para la cuenca Ramis

Figura 4-6. FDA conjunta para la severidad y la duración de la cuenca Ramis. Eventos de S>=s y D>=d (izquierda) y para eventos de S>=s o D>=d (derecha).
4.4.3. Cuenca Coata

La Figura 4-7. Muestra el ajuste de los datos de severidad y duración a las tres mejores funciones de distribución marginales propuestas, incluyendo en la leyenda los valores del RMSE de cada distribución. Las funciones de mejor ajuste para la severidad y duración fueron gamma y Pareto generalizado, respectivamente. Asimismo, la Figura 4-8 muestra los periodos de retorno producto del ajuste de los valores de severidad y duración a la cópula Frank.

Figura 4-7. FDA de las tres distribuciones de mejor ajuste para la cuenca Coata

Figura 4-8. FDA conjunta para la severidad y la duración de la cuenca Coata. Eventos de $S \geq s$ y $D \geq d$ (izquierda) y para eventos de $S \geq s$ o $D \geq d$ (derecha).
4.4.4. Cuenca Illpa

La Figura 4-9. Muestra el ajuste de los datos de severidad y duración a las tres mejores funciones de distribución marginales propuestas, incluyendo en la leyenda los valores del RMSE de cada distribución. Las funciones de mejor ajuste para la severidad y duración fueron Pearson III y Gamma, respectivamente. Asimismo, la Figura 4-10 muestra los periodos de retorno producto del ajuste de los valores de severidad y duración a la cópula Joe.

![FDA de las tres distribuciones de mejor ajuste para la cuenca Illpa](image1)

Figura 4-9. FDA de las tres distribuciones de mejor ajuste para la cuenca Illpa

![FDA conjunta para la severidad y la duración de la cuenca Illpa](image2)

Figura 4-10. FDA conjunta para la severidad y la duración de la cuenca Illpa. Eventos de $S>=s$ y $D>=d$ (izquierda) y para eventos de $S>=s$ o $D>=d$ (derecha)
4.4.5. Cuenca Ilave

La Figura 4-11. Muestra el ajuste de los datos de severidad y duración a las tres mejores funciones de distribución marginales propuestas, incluyendo en la leyenda los valores del RMSE de cada distribución. Las funciones de mejor ajuste para la severidad y duración fueron Gamma y Pareto generalizado, respectivamente. Asimismo, la Figura 4-12 muestra los periodos de retorno producto del ajuste de los valores de severidad y duración a la cópula Joe.

Figura 4-11. FDA de las tres distribuciones de mejor ajuste para la cuenca Ilave

Figura 4-12. FDA conjunta para la severidad y la duración de la cuenca Ilave. Eventos de S>=s y D>=d (izquierda) y para eventos de S>=s o D>=d (derecha)
Tabla 4-4: Periodo de retorno univariado y bivariado para diferentes duraciones y severidades

<table>
<thead>
<tr>
<th>Cuenca</th>
<th>TR</th>
<th>s</th>
<th>d</th>
<th>Tsd (y)</th>
<th>Tsd (o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huancané</td>
<td>2</td>
<td>1.79</td>
<td>3</td>
<td>2.14</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.53</td>
<td>8</td>
<td>5.34</td>
<td>4.70</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.44</td>
<td>11</td>
<td>10.68</td>
<td>9.40</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>14.46</td>
<td>14</td>
<td>21.36</td>
<td>18.80</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>19.90</td>
<td>18</td>
<td>53.41</td>
<td>47.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>24.06</td>
<td>21</td>
<td>106.82</td>
<td>94.00</td>
</tr>
<tr>
<td>Ramis</td>
<td>2</td>
<td>0.25</td>
<td>1</td>
<td>2.04</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.53</td>
<td>5</td>
<td>5.19</td>
<td>4.82</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.32</td>
<td>11</td>
<td>10.39</td>
<td>9.64</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>19.22</td>
<td>18</td>
<td>20.78</td>
<td>19.28</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>37.40</td>
<td>31</td>
<td>51.95</td>
<td>48.19</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>57.57</td>
<td>45</td>
<td>103.89</td>
<td>96.39</td>
</tr>
<tr>
<td>Coata</td>
<td>2</td>
<td>1.37</td>
<td>2</td>
<td>2.04</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.74</td>
<td>10</td>
<td>5.27</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12.90</td>
<td>14</td>
<td>11.12</td>
<td>9.08</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>18.19</td>
<td>18</td>
<td>24.91</td>
<td>16.71</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>25.27</td>
<td>22</td>
<td>84.18</td>
<td>35.56</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>30.67</td>
<td>25</td>
<td>242.27</td>
<td>63.00</td>
</tr>
<tr>
<td>Illpa</td>
<td>2</td>
<td>0.91</td>
<td>2</td>
<td>2.13</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.48</td>
<td>7</td>
<td>5.32</td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.98</td>
<td>11</td>
<td>10.64</td>
<td>9.43</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>17.41</td>
<td>16</td>
<td>21.29</td>
<td>18.86</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>26.79</td>
<td>22</td>
<td>53.21</td>
<td>47.15</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>34.30</td>
<td>27</td>
<td>106.43</td>
<td>94.30</td>
</tr>
<tr>
<td>Ilave</td>
<td>2</td>
<td>1.33</td>
<td>2</td>
<td>2.15</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.78</td>
<td>8</td>
<td>5.39</td>
<td>4.66</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11.58</td>
<td>13</td>
<td>10.78</td>
<td>9.33</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>16.63</td>
<td>17</td>
<td>21.55</td>
<td>18.65</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>23.55</td>
<td>22</td>
<td>53.89</td>
<td>46.64</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>28.90</td>
<td>26</td>
<td>107.77</td>
<td>93.27</td>
</tr>
</tbody>
</table>

Finalmente, en base a las FDA se extrajeron los cuantiles de severidad y duración para diferentes periodos de retorno, así como los periodos de retorno de probabilidad bivariada para la ocurrencia de severidades y duraciones superiores al cuantil (Tsd(y)) y los periodos de retorno de la ocurrencia de severidades o duraciones superiores al cuantil (Tsd(o)); como se muestra en la Tabla 4-3.

Para un mismo periodo de retorno univariado (T=10 años), las cuencas de Coata e Ilave presentan mayor severidad y duración de las sequías. Asimismo, de la Tabla 4-3, se puede inferir que los periodos de retorno bivariados (Tsd(y)) para severidades mayores a 10 (S>=10) y duraciones superiores a 11 (D>=11) son menores para las cuencas de Coata e Ilave, por lo que estas cuencas tendrían mayor probabilidad de ocurrencia de eventos de las características mencionadas.
5. CONCLUSIONES

En el diseño y la gestión de los recursos hídricos, no es suficiente conocer las propiedades de probabilidad de la duración o la severidad de la sequía solamente, sino que también es esencial conocer las propiedades de probabilidad conjuntas (o condicionales) de las mismas. Por ello, este estudio presenta el uso de las funciones de cópula para el análisis de frecuencias bivariadas de las características de los eventos de sequía hidrológica en la región hidrográfica del Titicaca, llegando a las siguientes conclusiones:

- Existe una fuerte dependencia entre la severidad y la duración de las sequías hidrológicas, siendo la cuenca Coata la que presentó mayores valores de severidad y duración durante el periodo de estudio, comparada con las demás cuencas de la región hidrográficas del Titicaca.

- Las características de las sequías se ajustaron a diferentes distribuciones univariadas (distribuciones marginales), por lo que, se utilizaron las cópulas para evaluar las distribuciones conjuntas, siendo la cópula de Joe la que mejor describe la estructura de dependencia conjunta de las características de sequía en todas las cuencas a excepción de Coata, en la que hubo un mejor ajuste a la cópula de Frank. El análisis de probabilidad bivariada permitió estimar los periodos de retorno conjunto de las combinaciones de la ocurrencia de severidad y duración y severidad o duración, en cada cuenca de estudio. Así, para un periodo de retorno dado, las cuencas de Coata e Ilave presentan un mayor cuantil de severidad y duración de las sequías.
6. REFERENCIAS BIBLIOGRÁFICAS

Fernandez-Palomino CA (2017) Modelamiento Hidrológico de la vertiente del Titicaca. Lima, Perú

ANEXO

Criterios de selección de la distribución marginal y la cópula de mejor ajuste por cuenca
Huancane

<table>
<thead>
<tr>
<th>Función</th>
<th>Severidad RMSE</th>
<th>severidad ksD</th>
<th>Duración RMSE</th>
<th>duración ksD</th>
</tr>
</thead>
<tbody>
<tr>
<td>gam</td>
<td>0,06385054</td>
<td>0,1649341</td>
<td>gpa</td>
<td>0,09823923</td>
</tr>
<tr>
<td>pe3</td>
<td>0,06827175</td>
<td>0,1791796</td>
<td>wei</td>
<td>0,10197538</td>
</tr>
<tr>
<td>wei</td>
<td>0,06895629</td>
<td>0,1774848</td>
<td>pe3</td>
<td>0,10446934</td>
</tr>
<tr>
<td>gpa</td>
<td>0,07032519</td>
<td>0,1757921</td>
<td>gam</td>
<td>0,1064742</td>
</tr>
<tr>
<td>exp</td>
<td>0,07126575</td>
<td>0,1850081</td>
<td>exp</td>
<td>0,10763467</td>
</tr>
<tr>
<td>ln3</td>
<td>0,07957609</td>
<td>0,1644487</td>
<td>ln3</td>
<td>0,11498635</td>
</tr>
<tr>
<td>gev</td>
<td>0,08658958</td>
<td>0,1797413</td>
<td>gum</td>
<td>0,11666275</td>
</tr>
<tr>
<td>glo</td>
<td>0,09195593</td>
<td>0,1895951</td>
<td>gev</td>
<td>0,11996914</td>
</tr>
<tr>
<td>gum</td>
<td>0,09618949</td>
<td>0,1842869</td>
<td>glo</td>
<td>0,12556042</td>
</tr>
<tr>
<td>nor</td>
<td>0,11725195</td>
<td>0,2281029</td>
<td>nor</td>
<td>0,1323889</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Familia</th>
<th>Clayton</th>
<th>Frank</th>
<th>Joe</th>
<th>Gumbel</th>
</tr>
</thead>
<tbody>
<tr>
<td>npars</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>par1</td>
<td>10,4702551</td>
<td>28,3078278</td>
<td>11,1978859</td>
<td>7,09619265</td>
</tr>
<tr>
<td>par2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>logLik</td>
<td>35,255299</td>
<td>34,9328898</td>
<td>35,286678</td>
<td>35,0988724</td>
</tr>
<tr>
<td>AIC</td>
<td>-68,510598</td>
<td>-67,8657795</td>
<td>-68,573356</td>
<td>-68,1977447</td>
</tr>
<tr>
<td>BIC</td>
<td>-67,2917222</td>
<td>-66,6469037</td>
<td>-67,3544802</td>
<td>-66,9788689</td>
</tr>
<tr>
<td>Función</td>
<td>RMSE</td>
<td>ksD</td>
<td>Función</td>
<td>RMSE</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>ln3</td>
<td>0,04980149</td>
<td>0,1579032</td>
<td>gpa</td>
<td>0,06411651</td>
</tr>
<tr>
<td>gpa</td>
<td>0,05350985</td>
<td>0,1593192</td>
<td>ln3</td>
<td>0,066616907</td>
</tr>
<tr>
<td>gev</td>
<td>0,06469844</td>
<td>0,1685367</td>
<td>gpa</td>
<td>0,06663742</td>
</tr>
<tr>
<td>glo</td>
<td>0,06500881</td>
<td>0,168592</td>
<td>gev</td>
<td>0,07632981</td>
</tr>
<tr>
<td>wei</td>
<td>0,07318507</td>
<td>0,1875</td>
<td>glo</td>
<td>0,07635911</td>
</tr>
<tr>
<td>pe3</td>
<td>0,08120981</td>
<td>0,1875</td>
<td>exp</td>
<td>0,08993072</td>
</tr>
<tr>
<td>gam</td>
<td>0,09134939</td>
<td>0,2634074</td>
<td>wei</td>
<td>0,0926508</td>
</tr>
<tr>
<td>exp</td>
<td>0,11360301</td>
<td>0,270606</td>
<td>pe3</td>
<td>0,09316373</td>
</tr>
<tr>
<td>gum</td>
<td>0,14075966</td>
<td>0,251313</td>
<td>gum</td>
<td>0,13003357</td>
</tr>
<tr>
<td>nor</td>
<td>0,17569776</td>
<td>0,3011561</td>
<td>nor</td>
<td>0,16865688</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Familia</th>
<th>Clayton</th>
<th>Frank</th>
<th>Joe</th>
<th>Gumbel</th>
</tr>
</thead>
<tbody>
<tr>
<td>npars</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>par1</td>
<td>7,989</td>
<td>27,759</td>
<td>8,770</td>
<td>6,547</td>
</tr>
<tr>
<td>par2</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>logLik</td>
<td>18,393</td>
<td>22,083</td>
<td>18,441</td>
<td>20,918</td>
</tr>
<tr>
<td>AIC</td>
<td>-34,786</td>
<td>-42,167</td>
<td>-34,882</td>
<td>-39,835</td>
</tr>
<tr>
<td>BIC</td>
<td>-34,013</td>
<td>-41,394</td>
<td>-34,110</td>
<td>-39,062</td>
</tr>
</tbody>
</table>
COATA

<table>
<thead>
<tr>
<th>Severidad</th>
<th>Duración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
<td>RMSE</td>
</tr>
<tr>
<td>gam</td>
<td>0,03990066</td>
</tr>
<tr>
<td>pe3</td>
<td>0,04376392</td>
</tr>
<tr>
<td>weib</td>
<td>0,04377657</td>
</tr>
<tr>
<td>gpa</td>
<td>0,04379786</td>
</tr>
<tr>
<td>exp</td>
<td>0,04381536</td>
</tr>
<tr>
<td>ln3</td>
<td>0,05415015</td>
</tr>
<tr>
<td>gev</td>
<td>0,06023423</td>
</tr>
<tr>
<td>glo</td>
<td>0,06566025</td>
</tr>
<tr>
<td>gum</td>
<td>0,07132507</td>
</tr>
<tr>
<td>nor</td>
<td>0,09810163</td>
</tr>
</tbody>
</table>

Familia

<table>
<thead>
<tr>
<th>Family</th>
<th>Clayton</th>
<th>Frank</th>
<th>Joe</th>
<th>Gumbel</th>
</tr>
</thead>
<tbody>
<tr>
<td>npars</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>par1</td>
<td>11,888</td>
<td>44,316</td>
<td>12,675</td>
<td>9,043</td>
</tr>
<tr>
<td>par2</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>logLik</td>
<td>28,378</td>
<td>36,254</td>
<td>28,546</td>
<td>31,853</td>
</tr>
<tr>
<td>AIC</td>
<td>-54,755</td>
<td>-70,509</td>
<td>-55,093</td>
<td>-61,706</td>
</tr>
<tr>
<td>BIC</td>
<td>-53,760</td>
<td>-69,513</td>
<td>-54,097</td>
<td>-60,710</td>
</tr>
</tbody>
</table>
ILLPA

<table>
<thead>
<tr>
<th>Severidad</th>
<th>Duración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
<td>RMSE</td>
</tr>
<tr>
<td>pe³</td>
<td>0,06146002</td>
</tr>
<tr>
<td>wei</td>
<td>0,06382214</td>
</tr>
<tr>
<td>ln³</td>
<td>0,07475645</td>
</tr>
<tr>
<td>gpa</td>
<td>0,07742818</td>
</tr>
<tr>
<td>gev</td>
<td>0,08977925</td>
</tr>
<tr>
<td>gam</td>
<td>0,09111145</td>
</tr>
<tr>
<td>glo</td>
<td>0,09141696</td>
</tr>
<tr>
<td>exp</td>
<td>0,10852224</td>
</tr>
<tr>
<td>gum</td>
<td>0,13410527</td>
</tr>
<tr>
<td>nor</td>
<td>0,16113205</td>
</tr>
</tbody>
</table>

Familia

<table>
<thead>
<tr>
<th>Familia</th>
<th>Clayton</th>
<th>Frank</th>
<th>Joe</th>
<th>Gumbel</th>
</tr>
</thead>
<tbody>
<tr>
<td>npars</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>par1</td>
<td>11,086</td>
<td>21,885</td>
<td>11,817</td>
<td>6,259</td>
</tr>
<tr>
<td>par2</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>logLik</td>
<td>35,747</td>
<td>28,443</td>
<td>35,802</td>
<td>31,284</td>
</tr>
<tr>
<td>AIC</td>
<td>-69,494</td>
<td>-54,885</td>
<td>-69,604</td>
<td>-60,569</td>
</tr>
<tr>
<td>BIC</td>
<td>-68,275</td>
<td>-53,666</td>
<td>-68,385</td>
<td>-59,350</td>
</tr>
</tbody>
</table>
ILAVE

<table>
<thead>
<tr>
<th>Función</th>
<th>RMSE</th>
<th>ksD</th>
<th>Función</th>
<th>RMSE</th>
<th>ksD</th>
</tr>
</thead>
<tbody>
<tr>
<td>gam</td>
<td>0.07106651</td>
<td>0.1872117</td>
<td>gpa</td>
<td>0.1680707</td>
<td>0.2428073</td>
</tr>
<tr>
<td>pe3</td>
<td>0.07166878</td>
<td>0.1898578</td>
<td>wei</td>
<td>0.1695123</td>
<td>0.2447955</td>
</tr>
<tr>
<td>wei</td>
<td>0.07431928</td>
<td>0.1836867</td>
<td>pe3</td>
<td>0.1706184</td>
<td>0.2463746</td>
</tr>
<tr>
<td>gpa</td>
<td>0.07900824</td>
<td>0.178205</td>
<td>exp</td>
<td>0.1726338</td>
<td>0.2497774</td>
</tr>
<tr>
<td>exp</td>
<td>0.08050823</td>
<td>0.2100957</td>
<td>gum</td>
<td>0.1762041</td>
<td>0.2504972</td>
</tr>
<tr>
<td>ln3</td>
<td>0.08599858</td>
<td>0.1775838</td>
<td>gam</td>
<td>0.1762948</td>
<td>0.2557171</td>
</tr>
<tr>
<td>gev</td>
<td>0.09425626</td>
<td>0.1961953</td>
<td>nor</td>
<td>0.1803959</td>
<td>0.2500679</td>
</tr>
<tr>
<td>glo</td>
<td>0.0976264</td>
<td>0.2023554</td>
<td>ln3</td>
<td>0.1838863</td>
<td>0.2647357</td>
</tr>
<tr>
<td>gum</td>
<td>0.10010555</td>
<td>0.2106644</td>
<td>gev</td>
<td>0.1895981</td>
<td>0.2720542</td>
</tr>
<tr>
<td>nor</td>
<td>0.12149667</td>
<td>0.246163</td>
<td>glo</td>
<td>0.1938079</td>
<td>0.2764553</td>
</tr>
</tbody>
</table>

Familia

<table>
<thead>
<tr>
<th></th>
<th>Clayton</th>
<th>Frank</th>
<th>Joe</th>
<th>Gumbel</th>
</tr>
</thead>
<tbody>
<tr>
<td>npars</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>par1</td>
<td>9,227</td>
<td>21,007</td>
<td>9,951</td>
<td>5,832</td>
</tr>
<tr>
<td>par2</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>logLik</td>
<td>29,856</td>
<td>25,666</td>
<td>29,868</td>
<td>27,568</td>
</tr>
<tr>
<td>AIC</td>
<td>-57,713</td>
<td>-49,331</td>
<td>-57,736</td>
<td>-53,135</td>
</tr>
<tr>
<td>BIC</td>
<td>-56,577</td>
<td>-48,196</td>
<td>-56,601</td>
<td>-52,000</td>
</tr>
</tbody>
</table>